Learning with Noise: Enhance Distantly Supervised Relation Extraction with Dynamic Transition Matrix
نویسندگان
چکیده
Distant supervision significantly reduces human efforts in building training data for many classification tasks. While promising, this technique often introduces noise to the generated training data, which can severely affect the model performance. In this paper, we take a deep look at the application of distant supervision in relation extraction. We show that the dynamic transition matrix can effectively characterize the noise in the training data built by distant supervision. The transition matrix can be effectively trained using a novel curriculum learning based method without any direct supervision about the noise. We thoroughly evaluate our approach under a wide range of extraction scenarios. Experimental results show that our approach consistently improves the extraction results and outperforms the state-of-the-art in various evaluation scenarios.
منابع مشابه
Jointly Extracting Relations with Class Ties via Effective Deep Ranking
Connections between relations in relation extraction, which we call class ties, are common. In distantly supervised scenario, one entity tuple may have multiple relation facts. Exploiting class ties between relations of one entity tuple will be promising for distantly supervised relation extraction. However, previous models are not effective or ignore to model this property. In this work, to ef...
متن کاملNoise Reduction Methods for Distantly Supervised Biomedical Relation Extraction
Distant supervision has been applied to automatically generate labeled data for biomedical relation extraction. Noise exists in both positively and negativelylabeled data and affects the performance of supervised machine learning methods. In this paper, we propose three novel heuristics based on the notion of proximity, trigger word and confidence of patterns to leverage lexical and syntactic i...
متن کاملDeep Residual Learning for Weakly-Supervised Relation Extraction
Deep residual learning (ResNet) (He et al., 2016) is a new method for training very deep neural networks using identity mapping for shortcut connections. ResNet has won the ImageNet ILSVRC 2015 classification task, and achieved state-of-theart performances in many computer vision tasks. However, the effect of residual learning on noisy natural language processing tasks is still not well underst...
متن کاملCombining Distant and Partial Supervision for Relation Extraction
Broad-coverage relation extraction either requires expensive supervised training data, or suffers from drawbacks inherent to distant supervision. We present an approach for providing partial supervision to a distantly supervised relation extractor using a small number of carefully selected examples. We compare against established active learning criteria and propose a novel criterion to sample ...
متن کاملBootstrapping Distantly Supervised IE Using Joint Learning and Small Well-Structured Corpora
We propose a framework to improve the performance of distantly-supervised relation extraction, by jointly learning to solve two related tasks: concept-instance extraction and relation extraction. We further extend this framework to make a novel use of document structure: in some small, wellstructured corpora, sections can be identified that correspond to relation arguments, and distantly-labele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017